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Motivation | Methodology

» Context: Addressing the challenge of disentanglement learning from an optimization perspective. The
optimization framework proposed in GCVAE seeks to maximize a new lower bound that is based on the
mutual information between reconstructed data 2’ and latent space z (i.e [,,(2/, z)), subject to inference
constraints and (ii) Automatic control of the hyperparameters of the loss components.

= Objective: Simultaneously balancing the tradeoff between reconstruction loss and Kullback—Leibler
divergences. The GCVAE loss is defined as follows,
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Where oy, [J+ and 7 are proportional-integral-derivative (PID) controllable Lagrangian

hyperparameters. GCVAE reduces into other lower bounds,
ELBO fop=a=—1,8=8=1,v=0
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InfoVAE fap=a=0,0=06=0,%>1
FactorVAE togp=a=-1,06=0=1,v=—1

Note that the ELBO is used interchangeably to refer to VAE loss function.
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GCVAE framework. «4, 3; and -y; respectively provide automatic balancing of the
log-likelihood and KL divergences for optimal reconstruction and disentanglement. The
feed-in A;, B; and C; are the expectations of the variational loss.

Results

= Evaluation metric: Mutual Information Gap (MIG) score [1] reports the compactness of the
latent code (I(yz, z7) — I(ys, z]]))/(zglzl I(y;,25)). Modularity score [3] expresses the number of
latent factors z; with high mutual information that explains the ground-truth factors. Joint Entropy
Minus Mutual Information Gap (JEMMIG) score [2] expreses the fact that a single latent factor
may explain more than one ground-truth factor; H(yi., 27) — I(yi, z7) + L (ys, 217).

= Comparison:

Model Reconstruction Disentanglement Robustness Interpretability
VAE 7 X X X
5-VAE X v X X
ControlVAE o/ 4 X v/
InfoVAE (MMD) o/ v/ X 4
GCVAE o/ 7 v/ v/

Quality and drawback of the different models with emphasis on disentanglement. With
high disentanglement comes poor reconstruction, and 3-VAE for large values of 3 has the
poorest quality of reconstruction. Robustness is a measure of how the trade-off between
disentanglement and reconstruction are managed.

= To evaluate the strength of disentanglement and the quality of reconstruction, we propose three family
of GCVAE according to the metric selected for the D 1,(q,(2)||pa(2)):

(1) GCVAE-I: Dg(qs(2)|lpo(2)) = Dipap(allp);
(2) GCVAE-II: D 1(qs(2)lIpo(2)) = Dirap(allp)
(3) GCVAE-1II: Drcr(qy(2)||pe(2)) = EX " D3arp(alp)-

MIG T Modularity T JEMMIG 1 Reconstruction loss | KL loss

VAE 0.1268 0.798 0.233 3.339 3.0025
B-VAE  0.0778 0.881 0.238 0.012 35.0295
ControVAE 0.1213 0.782 0.312 0.016 24.33809
InfoVAE  0.1501 0.757 0.188 0.079 10.0621
GCVAE-I  0.1507 0.844 0.236 0.012 24.3739
GCVAE-II 0.2793 0.858 0.312 0.012 24.4316
GCVAE-IIl  0.1337 0.825 0.294 0.015 24.2937

Performance comparison of different models on DSprites after training on 737 sam-
vles.  Comparison metrics MIG [1], Modularity (MOD) (3] and JEMMIG [2] for 10-D
_atent representation. The direction of the arrow indicates the best performing model.
Higher is better for MIG, Modularity and JEMMIG(1 — JEM MI1G). GCVAE-II per-
forms best on MIG disentanglement metric, robustness and interpretability; plus having
the lowest reconstruction error. GCVAE-I, Il and ControlVAE also measure up in
disentanglement compared to other benchmark models. GCVAEs have the least recon-
struction error partly due to the normalization introduced by the inverse precision matrix
in Dx1(qs(2))||pe(2)) and the weight on the first term of the GCVAE loss. 5-VAE (with
3 = 1le~*) has a comparable reconstruction loss with GCVAE-II and the best Modularity.
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Generative process py(x|z)p(z) comparison for the different models after training on 3D

shapes (top), MNIST (middle), DSprites (bottom) dataset for 250K, 500 and 250 K
epochs respectively. GCVAE-II and ELBO (VAE) have similar reconstruction quality with
better interpretation. GCVAE-II clearly outperformed the benchmark models in generat-
ing meaningful, diverse and clear representations of the original data. 5-VAE is the least
performing at generating interpretable image of the original data.
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Model performance comparison on 737 samples of DSprites data. Arrows indicate di-
rection of best performing model. Top: Comparison of reconstruction error against KL
divergence , Dx1(qs(2|x))||pa(2)) and correlation, Dg1(qs(2))||pe(2)). High KL-Low
reconstruction error observed for Latent-10. Low reconstruction error does and high KL
does not imply high disentanglement. High disentanglement using FactorVAE is observed
on Latent-2 followed by Latent 10. Bottom: Comparing disentanglement metrics with
reconstruction loss. Highest disentanglement on MIG metric observed for GCVAE-II on
Latent-2, however, Best scores is observed for GCVAE-Il on Latent-10. JEMMIG is sim-
ilar in behaviour with MIG. RHS: Validating the statement Latent disentanglement is
not correlated with KL maximization.

Conclusion

We propose a new lower bound we refer to as, Generalized-Controllable Variational Autoencoder (GCVAE). A model built from an constraint optimization perspective to maximize mutual information in the generative
phase subject to inference constrains to encourage disentanglement in the latent space. We use the Mahalanobis distance metric as a heuristic to encourage disentanglement in the variables of the latent space and
show that the representation obtained GCVAE is both meaningful and interpretable, with low reconstruction loss. GCVAE-II shows extensive strength in disentangling the latent space and reconstructing with minimal
mutual information loss compared to other variants. Next objective is using the model together with transformer model for decision (text) generation.
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