GCVAE: Generalized-Controllable Variational Autoencoder

Ezukwoke K.¹, Hoayek A.¹, Batton-Hubert M.¹ and Boucher X.¹

¹Mines Saint-Etienne, Univ. Clermont Auvergne, CNRS UMR 6158 LIMOS, Henri FAYOL institute, F-42023, Saint-Etienne, France

Motivation | Methodology

- **Context**: Addressing the challenge of disentanglement learning from an optimization perspective. The optimization framework proposed in **GCVAE** seeks to maximize a new lower bound that is based on the mutual information between reconstructed data x' and latent space z (i.e $I_p(x', z)$), subject to inference constraints and (ii) Automatic control of the hyperparameters of the loss components.
- Objective: Simultaneously balancing the tradeoff between reconstruction loss and Kullback–Leibler divergences. The GCVAE loss is defined as follows,

$$\mathcal{L}(\theta, \phi, \xi^+, \xi^-, \xi_p, \alpha, \beta, \gamma) = (1 - \alpha_t - \beta_t) \mathbb{E}_{p\mathcal{D}_z \sim q_\phi(z|x)} [\ln p_\theta(x|z)] - \beta_t \mathbb{E}_{p\mathcal{D}} D_{KL}(q_\phi(z|x)||p_\theta(z)) + \gamma_t \mathbb{E}_{p\mathcal{D}} D_{KL}(q_\phi(z)||p_\theta(z)) + \gamma_t \mathbb{E}_{p\mathcal{D}} D_{KL}(q_\phi(z)||p_\theta(z))$$
(1)

Where α_t , β_t and γ_t are proportional-integral-derivative (PID) controllable Lagrangian hyperparameters. GCVAE reduces into other lower bounds,

$$\mathcal{L}(\theta,\phi,\xi^{+},\xi^{-},\xi,\alpha,\beta,\gamma) = \begin{cases} ELBO & \text{if } \alpha_{t} = \alpha = -1, \beta_{t} = \beta = 1, \gamma = 0\\ ControlVAE & \text{if } \alpha_{t} = \alpha = 0, \beta_{t} > 0, \gamma = 0\\ ImfoVAE & \text{if } \alpha_{t} = \alpha = 0, \beta_{t} = \beta = 0, \gamma = 1 \end{cases}$$
(2)

GCVAE framework. α_t, β_t and γ_t respectively provide automatic balancing of the

 $\begin{array}{ll} Infov AE & \text{if } \alpha_t = \alpha = 0, \beta_t = \beta = 0, \gamma_t > 1 \\ Factor VAE & \text{if } \alpha_t = \alpha = -1, \beta_t = \beta = 1, \gamma = -1 \end{array}$

Note that the ELBO is used interchangeably to refer to VAE loss function.

log-likelihood and KL divergences for optimal reconstruction and disentanglement. The feed-in A_t, B_t and C_t are the expectations of the variational loss.

Results

Evaluation metric: Mutual Information Gap (MIG) score [1] reports the compactness of the latent code (I(y_k, z_I) – I(y_k, z_{II}))/(Σ^d_{j=1} I(y_i, z_j)). Modularity score [3] expresses the number of latent factors z_j with high mutual information that explains the ground-truth factors. Joint Entropy Minus Mutual Information Gap (JEMMIG) score [2] express the fact that a single latent factor may explain more than one ground-truth factor; H(y_k, z_I) – I(y_k, z_I) + I(y_k, z_{II}).

• Comparison:

Model	Reconstruction	Disentanglement	Robustness	Interpretability
VAE	V	×	×	×
β -VAE	×		×	×
ControlVAE	 ✓ 		×	V
InfoVAE (MMD)	 ✓ 	 ✓ 	×	V
GCVAE	 ✓ 	 ✓ 	V	V

Quality and drawback of the different models with emphasis on disentanglement. With high disentanglement comes poor reconstruction, and β -VAE for large values of β has the poorest quality of reconstruction. Robustness is a measure of how the trade-off between disentanglement and reconstruction are managed.

1	4	1	1	5		12	1		1	-	- 2		-	3	1	4	4	5	5	5	5	+	to the		10	-	-	1	2	1	-	-	1
4	4	4	4	4	4		- 2		11				1	14	4	4	4	4	4	t	4	+	to the		10	1		- 2	-2	1	2	1	-
4	4	4	4	4	-	1	-	L	-	-		-1	1	2	1	4	4	4	4	4	5	4	4-4	2	-0		-	11	1		4	L.	1
4	4	4	4	4	14	- 4	1	12	1	23		1-1	u	1	1	4	4	4	4	4	4	+	t t	3	1	-	1-3	-4	4	1	2	-	1
1	4	1	t	1	4.	-	13	-	1	1	1		1	-	t	1	4	5	1	1	4	4	to the	-1	14	-1	-11	-le		1	11-	-	-
	((a) ELBO	D			(1	b) BETA	VAE			(c)	CONTRO	OLVAE			(d) INFOV	AE			(e) (GCVAE-I			(f) GCVA	Æ-II			(g)	GCVAE-	ш	
**********	88573772246	888333557477	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1777944444 9744944444	7799999555555	777999999999999999999999999999999999999	777999999999999999999999999999999999999	779998883333	77799955533	000003333		5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9779944444	55888883333 555	999355937388 99935988		1005534444	61777774444	1117777779 <i>99</i>	99444444444	9444995669 7449995669	<i>F F F F F F F F F F</i>	8 8 8 8 8 8 8 8 8 8 8 8 8 8	3333-133355	333333333 33333333 33333333 33333333 3333		5 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88888888888888888888888888888888888888	944440 309	94444556655 94444556655	887F8985555	8888885757 8888885757 7777	885553333333 8855533333333 8855533333333
	(a)	ELE	30			(b) I	BETA	AVAE	Ξ	(c) CO	NTF	ROLV	AE		(d) I	NFO	VAE			(e) G	CVA	E-I		(f)	GCV	AE-	II		(g) (GCVA	E-III	
	٠	٠	٠	٠	۲			۲	١	•	4		۰.	١	•	*	•		1	•	* *		\$		٠		۲	٠	•		4	•	۲
		۰	٠	•	•	4	¥		•		•	٠	٠	۲		*	•		•	•	÷ 4					*	ŝ,		٠	۲	*	•	•
٠	٠	٠	٠	٠	•		٠	•		4			۲	۵	*	()		4		•	ب ه				•		۲		-	•	۲	٠	٠
	٠	٠	٠	٠	•	٠	٠	٠	٠	-	٠	•	ŧ	+	٠		Ě	•	۵	٠				٠		•	•	•	۲	4	٠	ŧ	•
٠	٠	۲	٠	۲	•	٠		•		۶	٠	٠	*	*	•	ţî.	-	*	*	۲	цî,		* *		*	•	•		•	•	•		•
	(i	a) ELBC)			(b) BETAV	Æ			(c) (ONTRO	LVAE			(d)	INFOVA	E			(e) G(CVAE-I			(f)	GCVAE	E-II			(g) (GCVAE-II	I	

Generative process $p_{\theta}(x|z)p(z)$ comparison for the different models after training on **3D** shapes (top), MNIST (middle), DSprites (bottom) dataset for 250K, 500 and 250Kepochs respectively. GCVAE-II and ELBO (VAE) have similar reconstruction quality with better interpretation. GCVAE-II clearly outperformed the benchmark models in generating meaningful, diverse and clear representations of the original data. β -VAE is the least performing at generating interpretable image of the original data.

• To evaluate the strength of disentanglement and the quality of reconstruction, we propose three family of GCVAE according to the metric selected for the $D_{KL}(q_{\phi}(z)||p_{\theta}(z))$:

(1) GCVAE-I: $D_{KL}(q_{\phi}(z)||p_{\theta}(z)) = D^2_{MMD}(q||p);$ (2) GCVAE-II: $D_{KL}(q_{\phi}(z)||p_{\theta}(z)) = D^2_{MAH}(q||p)$

(3) GCVAE-III: $D_{KL}(q_{\phi}(z)||p_{\theta}(z)) = \mathbb{E}\Sigma^{-1}D_{MMD}^{2}(q||p).$

	MIG ↑	Modularity \uparrow	JEMMIG ↑	Reconstruction loss \downarrow	KL loss 🗡
VAE	0.1268	0.798	0.233	3.339	3.0025
eta-VAE	0.0778	0.881	0.238	0.012	35.0295
ControVAE	0.1213	0.782	0.312	0.016	24.3809
InfoVAE	0.1501	0.757	0.188	0.079	10.0621
GCVAE-I	0.1507	0.844	0.236	0.012	24.3739
GCVAE-II	0.2793	0.858	0.312	0.012	24.4316
GCVAE-III	0.1337	0.825	0.294	0.015	24.2937

Performance comparison of different models on **DSprites** after training on 737 samples. Comparison metrics MIG [1], Modularity (MOD) [3] and JEMMIG [2] for 10-D Latent representation. The direction of the arrow indicates the best performing model. Higher is better for MIG, Modularity and JEMMIG(1 - JEMMIG). **GCVAE-II** performs best on MIG disentanglement metric, robustness and interpretability; plus having the lowest reconstruction error. **GCVAE-I**, **III** and **ControlVAE** also measure up in disentanglement compared to other benchmark models. **GCVAEs** have the least reconstruction error partly due to the normalization introduced by the inverse precision matrix in $D_{KL}(q_{\phi}(z))||p_{\theta}(z))$ and the weight on the first term of the GCVAE loss. β -**VAE** (with $\beta = 1e^{-4}$) has a comparable reconstruction loss with GCVAE-II and the best Modularity.

Model performance comparison on 737 samples of **DSprites** data. Arrows indicate direction of best performing model. **Top**: Comparison of reconstruction error against KL divergence , $D_{KL}(q_{\phi}(z|x))||p_{\theta}(z))$ and correlation, $D_{KL}(q_{\phi}(z))||p_{\theta}(z))$. High KL-Low reconstruction error observed for Latent-10. Low reconstruction error does and high KL does not imply high disentanglement. High disentanglement using FactorVAE is observed on Latent-2 followed by Latent 10. **Bottom**: Comparing disentanglement metrics with reconstruction loss. Highest disentanglement on MIG metric observed for GCVAE-II on Latent-2, however, Best scores is observed for GCVAE-II on Latent-10. JEMMIG is similar in behaviour with MIG. **RHS**: Validating the statement *Latent disentanglement is not correlated with KL maximization*.

Conclusion

We propose a new lower bound we refer to as, Generalized-Controllable Variational Autoencoder (GCVAE). A model built from an constraint optimization perspective to maximize mutual information in the generative phase subject to inference constraints to encourage disentanglement in the latent space. We use the Mahalanobis distance metric as a heuristic to encourage disentanglement in the variables of the latent space and show that the representation obtained GCVAE is both meaningful and interpretable, with low reconstruction loss. GCVAE-II shows extensive strength in disentangling the latent space and reconstructing with minimal mutual information loss compared to other variants. Next objective is using the model together with transformer model for decision (text) generation.

References

[1] Ricky T. Q. Chen, Xuechen Li, Roger Grosse, and David Duvenaud. Isolating sources of disentanglement in variational autoencoders, 2019.
[2] Kien Do and Truyen Tran. Theory and evaluation metrics for learning disentangled representations, 2021.
[3] Karl Ridgeway and Michael C. Mozer. Learning deep disentangled embeddings with the f-statistic loss, 2018.

